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ABSTRACT 

Sign language is a way used by deaf people to communicate with other 

peoples via hand motions and gestures. Sign Language Recognition (SLR) has the 

goal of bridging the gap between sign language users and others by automatically 

recognizing signs. Recently, for SLR, researchers have been attracted by skeleton 

based action recognition since the background and the subject becomes independent. 

Some methods have been proposed to use pose estimators to obtain better models, 

however one of the latest works reveals the superiority of Graph Convolutional 

Networks. Research on sign language recognition with current state of the art methods 

yields very high recognition accuracy. However, this is not always the case, when 

working with small datasets or when moving to real-time applications from large, 

high quality datasets. The limited amount of training data for the sign recognition task 

may lead to overfitting or otherwise restrict the performance of SLR models in real-

world scenarios. In this paper, we present a selection of identical & similar signs in 

two public isolated Sign Language datasets to create a dataset where we can use 

supervised domain adaptation methods to measure transferrablity of learned 

classification models. We perform an in-depth analysis on the effectiveness of domain 

adaptation techniques. We also do an in-depth analysis on sign properties to analyze 

how much they effect the performance of the models. 
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CHAPTER 1 

INTRODUCTION 

1.1 Sign Language Recognition 

Sign language is a way for deaf people to communicate with each other. Sign language is 

different from other spoken languages because signers convey information visually, that 

is, using the movement of their hands and body. Generally, isolated sign recognition and 

continuous sign recognition are the two types of sign language recognition. 

 

Researchers have been studying to automate the recognition of sign language utilizing the 

advancement in computer vision. Traditional Sign Language Recognition (SLR) methods 

mainly employ feature extraction and localization methods such as HOG [1]  and SIFT 

[2] associated with linear classifiers such as SVM [3]. As deep learning technology has 

been advancing and outperforms previous approaches, researchers have been attracted by 

this progress and oriented their attraction towards deep learning based methods. For SLR, 

general video representation learning approaches such as RNN and LSTMs, and 3D 

CNNs are widely used to achieve good performance [4,5]. To develop a more effective 

approach, local motion information and attention frameworks are incorporated for better 

results in terms of accuracy. 

 

Some of the recent works have developed skeleton-based methods, which provides 

complementary information to RGB formatted image inputs and resulted in even better 

performances [6.7.8]. One of the recent work, SL-GCN [9], has utilized Graph 

Convolution Network (GCN), inspired by the state-of-the-art body pose estimation 

studies. They have shown very good results in terms of both its accuracy and fastness. 
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In this project, we propose to enhance the performance of the state-of-the-art deep 

learning method for isolated sign language recognition on BosphorusSign22K dataset 

using transfer learning methods. Transfer learning approaches aim to use data from a 

data-rich source task to improve task performance on a data-poor target task. We establish 

a sign language recognition baseline for cross-dataset sign language recognition using 2 

public isolated Turkish Sign Language datasets. 

 

1.2 Domain Adaptation and Transfer Learning 

Domain adaptation is a field that aims to train a deep learning network on a “source” 

data distribution, which generally consists of many amount of labeled-data, such that 

it can transfer its knowled to perform well on a different “target” data distribution, 

which in general lacks labeled data. As an example, let us assume we have two car 

datasets, each of which has 10 different classes and each car in the first dataset is 

blue-colored, whereas it is red-colored in the second dataset. In other words, the data 

distribution is different. However, suppose, the second dataset does not contain the 

class information. Hence, one approach is to train a model using the first dataset in a 

supervised setting, then test and use it on the second dataset, where we do not have 

the classes. Domain adaptation is a type of transfer learning which proposes solutions 

to the above-described problem. 

Let 𝑋 and 𝑌 be our input and label spaces. What machine learning model does is to 

approximate a function 𝑓 that maps 𝑋 to 𝑌, i.e. 𝑓: 𝑋 → 𝑌. This model is learned in a 

data-driven fashion, where each sample can be represented as the following set: 𝑆 =

{(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} where m is the sample size and (𝑥𝑖 , 𝑦𝑖) ∈ 𝑋 ×  𝑌. 

This is the formulation for supervised learning. The difference between supervised 

learning and domain adaptation is that in domain adaptation, we have 2 sample 

distributions namely source and target denoted as 𝐷𝑆 and 𝐷𝑇 on 𝑋 ×  𝑌. The domain 

adaptation algorithms attempt to transfer the knowledge from the source domain to 

target domain, and the objective is to learn function 𝑓 such that we get good results 

for target domain. 



3 

 

Compared to image-based domain adaptation (DA),  Video-based DA attracted fewer 

studies. In video classification, models have to take into account the temporal 

variations on top of variations in the image space. Only a few works focus on small-

scale video DA with only a few overlapping categories [21,22]. Several methods aim 

to use image-based domain adaptation methods with 3D classification networks, such 

as adding a gradient reversal layer for domain invariance [23]. The TA3N study [24] 

proposes a method using domain-specific attention while learning to align frames 

across domains. They demonstrate the improvement in performance by introducing 

the UCF-HMDB full and Kinetics-Gameplay datasets, providing a benchmark for 

cross-dataset transfer learning in action recognition. 

In this project we establish a sign language recognition baseline for cross-dataset sign 

language recognition using 2 public isolated Turkish Sign Language datasets. These 

datasets share 57 common gestures. However not all gestures are identical as their 

performance varies from dataset to dataset due to differences in interpretation and 

style. 

 

 

 

 



4 

CHAPTER 2 

METHODOLOGY 

2.1 Domain Adaptation Methods 

2.1.1 Domain Adversarial Training of Neural Networks (DANN) [10] 

The first approach is “domain adversarial training of neural networks” method. This 

approach combines representation learning and unsupervised domain adaptation and 

proposes an end-to-end training model. It implements the idea that the model should 

not learn to discriminate between the source and target domains. To achieve this, the 

model jointly optimizes three training processes: 1- minimizing the loss coming from 

label classifier (Ly), 2- maximizing the loss of a domain classifier so that model does 

not learn how to discriminate them (they achieve this by adding a gradient reversal) 3- 

optimizing the feature extractor. 

Figure 1. The proposed framework for DANN 

 

 

 

2.1.2 Minimum Class Confusion (MCC) [11] 

The second approach introduces a loss function that is calculated using the predictions 

in an unsupervised manner. The class confusion tries to explore the missing piece in 
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existing methods, the tendency that a model confuses the predictions between the 

correct and ambiguous classes for target examples. Inspired by this fact, they propose 

a general loss function, which can be characterized as a non-adversarial domain 

adaptation method with a high convergence speed. It calculates the class correlation 

of the predictions, and tries to minimize the non-diagonal elements, equivalent to 

maximizing the diagonal elements to prevent confusion. 

2.1.3 Domain Specific Batch Normalization (DSBN) [16] 

The DSBN approach shares all model parameters except batch normalization layers 

within the feature encoder. The batch normalization layer in a neural network 

regularizes feature representations from different domains without taking into account 

class or domain information. However, when domain discrepancy is significant, the 

effect of batch normalization is diminished. In this approach, individual batch 

normalization layers keep track of unique normalization parameters and batch 

statistics values for each domain. 

2.1.4 Joint Adaptation Network (JAN) [17] 

The JAN approach proposed in [17] maps features from different domains into a new 

data space where inter-class features have a more significant similarity. The method 

proposed, named joint maximum mean discrepancy (JMMD), minimizes the joint 

probability distribution distance of the source and target class-specific layers. The 

approach adds task-specific layers on top of the base SL-GCN network to learn 

mapping a common domain. 

2.2 Datasets 

2.2.1 BSIGN22K [12] 

The dataset on which we mainly conduct our experiments is the BosphorusSign22k  

benchmark, which contains a vocabulary of 744 sign classes, performed by 6 native 

signers. Overall, the total number of videos is 22.542, which are recorded with 

Microsoft Kinect v2 – 30 FPS. This dataset is used as our target dataset. 
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We selected the samples belonging to User 4 as our test set as selected in the original 

paper. However, to better understand how well domain adaptation networks work, we 

also added the samples belonging to User 3 to our test set. Figure 2 shows the learning 

curves when our network is trained only with the samples from corresponding (title) 

indexed User samples and tested on Bsign22k User 4. As a result of the very low 

performance of User 3, we concluded that this user is the most different one, that is 

why we perform our testings on this user’s samples for all other experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Learning curves for the test sets composed of each user at each subplot 

 

2.2.2 AUTSL [13] 

The source dataset that we use is Ankara University Turkish Sign Language Dataset 

(AUTSL) , a comparably large multimode dataset, and is composed of isolated 

Turkish sign videos. It consists of 38.336 isolated sign video samples, including 226 
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signs, which are performed by 43 different signers in total. Samples are recorded with 

Microsoft Kinect v2, and dataset provides RGB, depth and skeleton data. Note that 

these two datasets have 57 common classes. 

 

2.3 Backbone Network 

2.3.1 SL-GCN 

In order to solve the multi-class classification task, we utilized Graph Convolution 

Networks due to their speed and high performance. For each sample video, we extract 

the whole body skeleton graph and feed the GCN with this graph that are composed 

of keypoints. The SL-GCN block is consturced with spatial convolutional network, 

self-attention and graph dropping module. 

 

Figure 3. SL-GCN Framework 

Instead of 3D CNNs [14], we performed our experiments with SL-GCN because 

Table 1 shows the effectiveness of SL-GCN. 

Dataset AUTSL Bsign22k AUTSL57 Bsign57 

SL-GCN 91.22 89.25 97.78 92.97 

Resnet 2+1D 84.65 81.2 92.3 88.26 

Table 1. Top-1 Accuracy results obtained by using each datasets corresponding 

training and test sets are reported. 

In Table 1, single domain accuracy results from each dataset are reported using both 

SL-GCN and 3D Convolution Based Neural Networks. In nearly all experiments, SL-

GCN outperforms rgb based 3D Neural Network based experiments. For this reason, 

the remainder of this paper uses the SL-GCN baseline method to report accuracy 

numbers on Bsign57. 
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For isolated sign language recognition, we have a set of N training examples from 

each sign language dataset T as Di
t, Li

t, where Di
t is a set of coordinates D in (J,T,3) 

extracted from a single isolated SLR video clip,  J is the number of joints, T is clip 

length, and the 3 values are the detected X, Y coordinates and the detection 

confidence values for each joint at each timestep. We obtain J=30 joints belonging to 

fingertips, finger bases, wrists, arms, neck, mouth, nose, and eyes for each frame of a 

sign language video.  

 

Having obtained the joints for each gesture, we apply several normalizations and 

augmentations to make our models more robust to small changes in user performance. 

A typical property of the isolated SLR datasets we use is that they both share the same 

rest pose where hands rest to the side of the users' legs. Frames that contain stationary 

hands in this rest pose are trimmed from the beginning and end of each video 

segment. In addition, further sampling is done from the sampled frames to bring the 

number of total frames sampled from each video to J frames. This was done using a 

random uniform sampling from a set of fixed intervals. This approach created 

duplicates of frames for shorter clips and provided temporal variation when sampling 

from longer clips. 

 

For each coordinate, we apply a spatial normalization where the origin of the 2D 

coordinate system is moved to the temporal mean of the neck joint for that gesture. In 

addition, random horizontal mirroring and random spatial coordinate translation 

augmentations were found to improve recognition performance and were thus added 

to our pipeline. 

 

The classifier base of our model is the SL-GCN model proposed by Jiang et. al [15]. 

The model takes input as a sequence of fixed length coordinates and outputs class 

prediction probabilities for sign language gestures.  
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We model the problem so that nodes of the graph correspond to joint landmark 

locations. The spatio-temporal graph adjacency matrix A is constructed in the spatial 

domain according to anatomical spatial ordering, where neighboring joints are 

assigned a value of 1 and all other joints are assigned a value of 0. In the temporal 

domain, all the joints are only connected to themselves.    

 

The architecture of the model consists of ten SL-GCN blocks for node and edge 

processing. Each SL-GCN block consists of a spatial convolution layer, multiplication 

with the adjacency matrix, and temporal convolution layer. The model includes 

decoupling with drop graph module proposed in [19] and spatio temporal channel 

(STC) attention modules proposed in [20]. The decoupling adds increased recognition 

power by dropping random joints along with their neighbors closer than an adjacency 

of K in A. Similarly, the STC attention module increases recognition power by 

focusing more on important joints, frames, and coordinates for certain gestures. 

 

 

 

 

, 
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CHAPTER 3 

EXPERIMENTATION AND RESULTS 

To make a comparison between domain adaptation methods and to understand 

whether the additional attribute labels are useful, we performed several experiments. 

Since it is a multi-class classification problem, we optimized our neural network 

model using categorical cross entropy loss. We used Adam optimizer having batch 

size of 128. 

 

3.1 Experiment 1 – Training on Shared Classes 

In the first experiment, we performed 5 different experiments namely target only, 

source only, combined, DANN and MCC. In all experiments, we only used the shared 

classes of these two datasets. In the target only, we only do training using our target 

dataset as the name suggests. In source only, at the training phase, we trained our 

model using samples from source dataset and tested it on our target dataset. In 

combined, we use both of the datasets in training phase and in DANN and MCC, we 

applied these adaptation methods to see how they effect the results. We used accuracy 

as our evaluation metric and measured on test set which is composed of the samples 

that belong to User 3 and User 4. Note that, we separated the training set of bsign57 

dataset into 4 partitions namely Users 2, Users 2,5, Users 2,5,6, Users 2,5,6,7 where 

only the corresponding indexed users are used at the training. 

 

 Train Test Users  

2 

Users 

2,5 

Users 

2,5,6 

Users  

2,5,6,7 Source Target Target 

Target only - Bsign 57 Bsign 57 67.19 81.41 88.28 92.97 

Source only Autsl 57  Bsign 57 60.6 
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Combined Autsl 57 Bsign 57 Bsign 57 87.31 91.41 94.32 95.8 

DANN Autsl 57 Bsign 57 Bsign 57 87.87 91.83 94.04 96.54 

MCC Autsl 57 Bsign 57 Bsign 57 86.82 91.77 95.68 97.15 

Table 2. Accuracy scores of domain adaptation methods when the samples from 

common classes is used for training 

Of the experimented transfer learning methods, the Domain Adversarial Neural 

Network (DANN) approach yields the highest benefit with lower numbers of target 

samples, while minimum class confusion approach yields higher results when the 

amount of samples in the target class starts to increase. The benefit of closed set 

transfer learning is higher when the amount of samples in the target training set are 

minimal. This is the closest use case to improving real time recognition using transfer 

learning. 

 

 

3.2 Experiment 2 – Training on Entired AUTSL 

Secondly, we explore the transfer learning situation where a larger source dataset is 

used. The main difference from closed set transfer learning is that the source domain 

contains 57 common and 159 different classes. In this setting, the difference from 

transferring from an arbitrary sign language dataset is the fact that we are sure no 

gesture from the source dataset actually is identical to a gesture from the target dataset 

but has a different label. 

 

 Train Test Users  

2,5,6,7 Source Target Target 

Target only - Bsign 57 Bsign 57 92.97 
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Source only Autsl 216  Bsign 57 71.23 

Combined Autsl 216 Bsign 57 Bsign 57 98.12 

DANN Autsl 216 Bsign 57 Bsign 57 98.19 

MCC Autsl 216 Bsign 57 Bsign 57 98.63 

Table 3. Accuracy scores of domain adaptation methods when entire AUTSL is used 

for training 

In Table 3, transfer learning from the larger AUTSL dataset is observed. The obtained 

accuracy numbers on Bsign57 reaches around %98 with the combined baseline and 

experimented transfer learning methods further improve upon this result. 

 

3.3 Experiment 3 -  Training Including Additional Attributes 

In bsign22k dataset, we have extracted additional labels for each samples namely 

number of hands that are used while performing gestures, repetitiveness of the sign, 

and circular property of the sign. For each of the attributes, we have target labels of 

either 1 or 0, hence it can be considered as a multi-label classification problem. To 

enhance the performance of the network, we connect a second classifier layer to also 

make model predict these attributes, thus we added an additional loss function that 

takes multi labels. The loss function is selected as binary cross entropy and we 

performed experiments with different loss weights. In this experiment, we investigate 

the effects of adding these labels one-by-one. From Table 4 to Table 7, showing the 

test scores on target dataset when they are trained on bsign57 without using domain 

adapatation algorithms. It corresponds to “target-only” training procedure with 

additional multi-label classification. 

 

Loss 

Weight 

No attributes # of Hands Repetitive Circular 

1 92.97 90.24 90.41 85.51 
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5 92.97 89.7 87.66 82.92 

10 92.97 89.34 86.11 83.9 

Table 4. Trained on Users 2,5,6,7 

 

Loss 

Weight 

No attributes # of Hands Repetitive Circular 

1 88.28 85.39 86.44 85.02 

5 88.28 88.1 83.46 79.09 

10 88.28 83.83 83.48 78.75 

Table 5. Trained on Users 2,5,6 

 

Loss 

Weight 

No attributes # of Hands Repetitive Circular 

1 81.41 79.77 80.73 75.85 

5 81.41 78.43 76.6 72.7 

10 81.41 78.24 71.79 72.28 

Table 6. Trained on Users 2,5 

 

Loss 

Weight 

No attributes # of Hands Repetitive Circular 
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1 67.19 69.78 67.35 69.84 

5 67.19 68.01 67.4 61.49 

10 67.19 68.52 66.69 62.64 

Table 7. Trained on Users 2 

From Table 4 to Table 7, we observe that when the training data gets smaller, then the 

additional attributes play an important role. In Table 7, number of hands attribute 

helps model learn better representations whereas when the training data gets larger, 

they worsen the performance of the model. 

3.4 Experiment 4 -  Fusion of Transfer Learning Methods 

In this section, we explore the combinations of these classifiers with finetuning and 

each other on the BSign22k shared dataset. The fusion of these algorithms is achieved 

by initializing the feature extractor and classifier layers of the algorithm, freezing 

them for the first five epochs, and then applying respective model architecture loss 

combinations to a single model. Of the attempted methods, finetuning and MCC 

approaches yield the most promising results. In a greedy fashion, we combined this 

method with several other methods, which gave us 98.8\% accuracy on the BSign22k 

shared task of the dataset. Note that in this experiment, we selected 4 users (2,5,6,7) 

as our training set. 

Table 8. Top-1 Accuracy results for fusion of transfer learning methods. 
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CHAPTER 4 

CONCLUSION 

 

4.1 Discussion and Future Work 

Overall, we performed some experiments to understand how domain adaptation works 

in Turkish sign language datasets and we observed that DANN and MCC outperforms 

even combined approach. As the number of training samples for target dataset 

increases, we get better results for domain adaptation methods. Also, our experiments 

highlights the importance of additional attributes when training data is inadequate. We 

see that, as the number of training samples are decreasing, the additional attributes 

start playing an important role for the accuracy performance of the model. 

 

Future work entails running additional experiments to understand how well the extra 

attributes are learned by the model when domain adaptation methods are applied. 

Furthermore, we want to investigate the performance when more than one domain 

adaptation methods are incorporated. By this way, using the different beneficial 

components of different domain adaptation algorithms, we aim to boost the 

performance of the model even better. 

 

4.2 Social, Environmental and Economical Impact 

As deaf people are not able to communicate with spoken language, sign language is a 

means of conveying information for them. To communicate with a deaf person is 

difficult for a hearing person as being proficient in sign language is difficult. As a 

result, there occurs a need for automatic interpretation of sign languages to solve this 

unfairness. Doing research and developing existing models for recognition of sign 

language for different cultures facilitate the communication between the hearing and 

the deaf individuals. It is one of the social impact of this project. 
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4.3 Cost Analysis 

I will do the code implementations in my local PC. Therefore, I do not need to pay for 

any electrical or mechanical parts and devices. I am planning to work 15+ hours per 

week, if we consider the average hourly wage of a research and development engineer 

in USA, which is $53, then my salary would be $795 per week. 

 

4.4 Standards 

My project is related to the following IEEE standard: 

“P3110 - Standard for Computer Vision (CV) - Algorithms, Application 

Programming Interfaces (API), and Technical Requirements for Deep Learning 

Framework: This standard establishes the application programming interfaces (API) 

model of the computer vision systems and specifies the functional and technical 

requirements of the API 

between the computer vision algorithm, deep-learning framework, and the data set in 

the process of algorithm training phase. This standard is suitable for the adaptation 

and invocation of computer vision algorithms using deep learning frameworks.” 

The definition clearly illustrates the points why this standard is a relevant one. I 

propose to solve a computer vision problem, which is isolated sign language 

recognition, using deep learning frameworks and dataset analysis. In addition, I 

follow the code of conduct during my research. 
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